Articles
SAMCHENKO Y.M., KERNOSENKO L.O., HONCHARUK O.V., POLTORATSKA T.P., PASMURTSEVA N.O., STERNIK D., KOSORUKOV P.O., KRYKLYA S.O. THERMOSENSITIVE AND PH-SENSITIVE HYDROGEL NANOCOMPOSITES WITH MAGNETIC LAPONITE
UDC 644.773.432
DOI: 10.15407/zht2018.64.049
SAMCHENKO Y.M., KERNOSENKOL.O., HONCHARUK O.V., POLTORATSKA T.P.,
PASMURTSEVA N.O., STERNIK D., KOSORUKOV P.O., KRYKLYA S.O.
F.D. Ovchfrenko Institute of Biological Chemistry NAS Ukraine
Department of Solid Physical Chemistry, Faculty of Chemistry, University of
Mary Curie-Skłodowska, Lublin, Poland
THERMOSENSITIVE AND PH-SENSITIVE HYDROGEL NANOCOMPOSITES WITH MAGNETIC LAPONITE
The thermosensitive and pH-sensitive nanocomposites based on magnetically controlled laponite are synthesized. It is shown that the physical crosslinking hydrogels based on N-isopropylacrylamide have been exhibit а phase transition between the swollen and collapsed states above 32°C and an increase in the phase transition intensity with a decrease in crosslinking frequency. At the same time, nanocomposites based on acrylic acid are characterized by a clear pH-dependence of their properties. Synthetic nanocomposites based on magnetic laponite and acrylic monomers have been researched by scanning electron microscopy, Fourier- transform infrared spectroscopy, laser correlation spectroscopy, and X-ray diffraction analysis. It was concluded that the application of synthesized hydrogels as magnetic-driven platform for targeted delivery and drug release is promising.
Key words: magnetically controlled laponite, hydrogel nanocomposite, thermosensitive hydrogels, pH-sensitive hydrogels, transport of drugs
REFERENCES
1. Langer R., Tirrell D. Designing materials for biology and medicine. Nature, 2004. V. 428. P. 487.
DOI: 10.1038/nature02388
https://doi.org/10.1038/nature02388
2. Van Vlerken L., Amiji M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv., 2006. V.3. P. 205.
DOI: 10.1517/17425247.3.2.205
https://doi.org/10.1517/17425247.3.2.205
3. Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008. V. 26. P. 57.
DOI: 10.1016/j.urolonc.2007.03.015
https://doi.org/10.1016/j.urolonc.2007.03.015
4. Kruti S. Soni, Swapnil S. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of Controlled Release, 2016. V. 240. P. 109–126.
DOI: 10.1016/j.jconrel.2015.11.009
https://doi.org/10.1016/j.jconrel.2015.11.009
5. Asadian-Birjand M., Sousa-Herves A., Steinhilber D., Cuggino J. C. And Calderon M. Functional Nanogels for Biomedical Applications. Curr. Med. Chem., 2012. V. 19. P. 5029–5043.
DOI: 10.2174/0929867311209025029
https://doi.org/10.2174/0929867311209025029
6. Xianjing Zhout, Yuanyuan Zhou, Jingjing Niet, Zhichao Ji, Junting Xut, Xinghong Zhang, Binyang Du Thermosensitive Ionic Microgels via Surfactant-Free Emulsion Copolymerization in Situ Quaternization Cross-Linking. Appl. Mater. Interfaces., 2014.
P. 4498–4513.
7. Steinhilber D., Rossow T., Wedepohl S., Paulus F., Haag R. Biocompatible functionalized polyglycerol microgels with cell penetrating properties Chem., Int. Ed., 2013. V. 52. P. 13538–13543.
DOI: 10.1002/anie.201308005
https://doi.org/10.1002/anie.201308005
8. Molina M., Giulbudagian M. and Calder nM. Macromol. Chem. Phys., 2014. V. 215. P. 2414–2419.
DOI: 10.1002/macp.201400286
https://doi.org/10.1002/macp.201400286
9. Zha L., Banikand B., Alexis F. Soft Matter. Stimulus responsive nanogels for drug delivery. Soft Matter., 2011. V.7. P. 5908–5916.
DOI: 10.1039/c0sm01307b
https://doi.org/10.1039/c0sm01307b
10. Shah N., Patel R. Formulation and development of hydrogel for poly acrylamide-co-acrylic acid. JPSBR, 2014. V. 4, N 1. P. 114–120.
11. Spizzirri U. G., Altimari I., Puoci F. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Polym J., 2011. V. 84. P. 517–523.
12. Gao H., Wang N., Hu X. Double Hydrogen-Bonding pH-Sensitive Hydrogels Retaining High-Strengths Over a Wide pH Range. Macromolecular rapid communications, 2013. V. 34, N 1. P. 63–68.
DOI: 10.1002/marc.201200548
https://doi.org/10.1002/marc.201200548
13. Samchenko YU.M., Dolynsʹkyy H.A., Pasmurtseva N.O., Poltoratsʹka T.P., Ulʹberh Z.R., Hamaliya M.F. Hidrohelevi nanokompozyty dlya termoinitsiyovanoho vyvilʹnennya fotosensybilizatoriv. Naukovi zapysky NaUKMA. Khimichni nauky i tekhnolohiyi, 2015. T. 170. P.34–39. [in Ukr.]
14. Haraguchi K., Takehisa T., Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules, 2002. V. 35. P. 10162–10171.
DOI: 10.1021/ma021301r
https://doi.org/10.1021/ma021301r
15. Liu, Y., Zhu, M.F., Liu, X.L., Zhang, W., Sun, B., Chen, Y.M., Adler, H.P. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer. 2006. Vol. 47. P. 1–5.
DOI: 10.1016/j.polymer.2005.11.030
https://doi.org/10.1016/j.polymer.2005.11.030
16. Xiong, L.J., Hu, X.B., Liu, X.X., Tong, Z. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultra-high tensibility. Polymer, 2008. V. 49. P. 5064–5071.
DOI: 10.1016/j.polymer.2008.09.021
https://doi.org/10.1016/j.polymer.2008.09.021
17. Kokabi, M., Sirousazar, M., Hassan, Z.M. PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J., 2007. V. 43. P. 773–781.
DOI: 10.1016/j.eurpolymj.2006.11.030
https://doi.org/10.1016/j.eurpolymj.2006.11.030
18. Wang, Y., Chen, D.J. Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J. Colloid Interface Sci., 2012. V.372. P. 245–251.
DOI: 10.1016/j.jcis.2012.01.041
https://doi.org/10.1016/j.jcis.2012.01.041
19. Okay, O., Oppermann, W. Polyacrylamide–clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules, 2007. V. 40. P. 3378–3387.
DOI: 10.1021/ma062929v
https://doi.org/10.1021/ma062929v
20. Huili Li, Renbao Gu, Shimei Xu Surfactant-assisted synthesis of a transparent ionic nanocomposite hydrogel. Applied Clay Science, 2014. V. 101. P. 335–338.
DOI: 10.1016/j.clay.2014.08.024
https://doi.org/10.1016/j.clay.2014.08.024
21. Shibayama, M., Suda, J., Karino, T., Okabe, S., Takehisa, T., Haraguchi, K. Structure and dynamics of poly(N-isopropylacrylamide)–clay nanocomposite gels. Macromolecules, 2004. V.37. P. 9606–9612.
DOI: 10.1021/ma048464v
https://doi.org/10.1021/ma048464v
22. Haraguchi, K., Farnworth, R., Ohbayashi, A., Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay. 2003. Macromolecules, V. 36. P. 5732–5741.
DOI: 10.1021/ma034366i
https://doi.org/10.1021/ma034366i
23. Korotych O., Samchenko Yu., Boldeskul I., Ulberg Z., Zholobak N., Sukhodub L. N-isopropylacrylamide-basedfine dispersed thermosensitive ferrogels obtained via in-situ technique. Materials Science and Engineering, 2013. V. 33. P. 892–900.
DOI: 10.1016/j.msec.2012.11.017
https://doi.org/10.1016/j.msec.2012.11.017
24. Manilo M., Lebovka N., Barany S. Electrokinetic study of impact of laponite platelets on stabilization of carbon nanotubes in aqueous suspensions. Materials Science and Engineering, 2015. V. 40. P. 96–104.