Articles

SAMCHENKO Yu., KOROTYCH O., KERNOSENKO L., POLTORATSKA T., LITTSYS O., PASMURTSEVA N., LEHENCHUK O., KRYKLIA S. REMOVAL OF HEAVY METALS FROM AQUEOUS SOLUTIONS USING A HYBRID HYDROGEL BASED ON POLYVINYLFORMAL AND POLYACRYLIC ACID

2017 – Zurnal Hromatografichnogo Tovarystva – V. XVII. – P. 27-38

UDC 544.77.022.84 + 628.345.4:546.562 + 644.773.432

DOI: 10.15407 / zht2017.63.027

SAMCHENKO Yu., KOROTYCH O., KERNOSENKO L., POLTORATSKA T., LITTSYS O., PASMURTSEVA N., LEHENCHUK O.,
KRYKLIA S.

Institute of Biocolloidal Chemistry named after. F. D. Ovcharenko NAS of Ukraine, Kyiv

REMOVAL OF HEAVY METALS FROM AQUEOUS SOLUTIONS USING A HYBRID HYDROGEL BASED ON POLYVINYLFORMAL AND POLYACRYLIC ACID

Sorption properties of highly porous hybrid hydrogel materials based on acetal of polyvinyl alcohol (polyvinyl formal) and acrylic hydrogel towards heavy metals such as zinc (II), nickel (II), and lead (II) have been studied. The highly efficient removal of metal ions (up to 90 %) from their individual solutions with a concentration of metal cations up to 5 mM was demonstrated. The possibility of almost complete regeneration of the polymer sorbent under its treatment with 0.1 M hydrochloric acid solution was shown.

Keywords: hybrid hydrogel, pH-sensitive hydrogel, sorbent, heavy metal, metal ions sorption, water purification.

REFERENCES:

1. Li X, Li Y, Zhang S, Ye Z. Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chemical Engineering Journal. 2012. N 183. P. 88-97.
DOI: 10.1016/j.cej.2011.12.025
https://doi.org/10.1016/j.cej.2011.12.025

2. Anirudhan TS, Rijith S, Tharun AR. Adsorptive removal of thorium (IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. N 368. P. 13-22.
DOI: 10.1016/j.colsurfa.2010.07.005
https://doi.org/10.1016/j.colsurfa.2010.07.005

3. Dalida MLP, Mariano AFV, Futalan CM, Kan CC, Tsai WC, Wan MW. Adsorptive removal of Cu(II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination. 2011. N 275. P. 154-159.
DOI: 10.1016/j.desal.2011.02.051
https://doi.org/10.1016/j.desal.2011.02.051

4. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB. Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chemical Engineering Journal. 2011. N 168. P. 68-76.
DOI: 10.1016/j.cej.2010.12.037
https://doi.org/10.1016/j.cej.2010.12.037

5. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004. N 56. P. 91-106.
DOI: https://doi.org/10.1016/j.chemosphere.2004.03.006
https://doi.org/10.1016/j.chemosphere.2004.03.006

6. Sastre J, Sahuquillo A. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta. 2002. N 462. P. 59-72.
DOI: 10.1016/S0003-2670(02)00307-0
https://doi.org/10.1016/S0003-2670(02)00307-0

7. Cheng R, Xiang B, Li Y, Zhang M. Application of dithiocarbamate-modified starch for dyes removal from aqueous solutions. Journal of Hazardous Materials. 2011. N 188. P. 254-260.
DOI: 10.1016/j.jhazmat.2011.01.104
https://doi.org/10.1016/j.jhazmat.2011.01.104

8. Panic VV, Velickovic SJ. Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Separation and Purification Technology. 2014. N 122. P. 384-394.
DOI: 10.1016/j.seppur.2013.11.025
https://doi.org/10.1016/j.seppur.2013.11.025

9. Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers. 2011. N 83. P. 528-536.
DOI: 10.1016/j.carbpol.2010.08.013
https://doi.org/10.1016/j.carbpol.2010.08.013

10. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 2011. N 92. P. 407-418.
DOI: 10.1016/j.jenvman.2010.11.011
https://doi.org/10.1016/j.jenvman.2010.11.011

11. Liu Y, Wang W, Wang A. Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination. 2010. N 259. P. 258-264.
DOI: 10.1016/j.desal.2010.03.039
https://doi.org/10.1016/j.desal.2010.03.039

12. Najafi MP, Hasanzadeh R, Khalafy J. Preparation of SMA functionalized sulfanilic acid hydrogels and investigation of their metal ions adsorption behavior. Iranian Polymer Journal. 2013. N 22. P. 133-142.
DOI: 10.1007/s13726-012-0111-5
https://doi.org/10.1007/s13726-012-0111-5

13. Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H. Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iranian Polymer Journal. 2014. N 23. P. 335-344.
DOI: 10.1007/s13726-014-0229-8
https://doi.org/10.1007/s13726-014-0229-8

14. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B. Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iranian Polymer Journal. 2012. N 21. P. 609-619.
DOI: 10.1007/s13726-012-0066-6
https://doi.org/10.1007/s13726-012-0066-6

15. Tanaka T. Gels. Encyclopedia of Polymer Science and Engineering. Vol. 7 New York, USA: John Wiley & Sons, 1987. 514 p.

16. You JO, Auguste DT. Conductive, physiologically responsive hydrogels. Langmuir. 2010. N 26.  P. 4607-4612.
DOI: 10.1021/la100294p
https://doi.org/10.1021/la100294p

17. Samchenko Yu, Ulberg Z, Korotych O. Multipurpose smart hydrogel systems. Advances in Colloid and Interface Science. 2011. Vol.168. P. 247-262.
DOI: 10.1016/j.cis.2011.06.005
https://doi.org/10.1016/j.cis.2011.06.005

18. Mehrdad Hamidi, Amir Azadi, Pedram Rafiei. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 2009. Vol. 60, N 15. P. 1638-1649.
DOI: 10.1016/j.addr.2008.08.002
https://doi.org/10.1016/j.addr.2008.08.002

19. Yuhui Li, Guoyou Huang, Xiaohui Zhang, Baoqiang Li, Yongmei Chen, Tingli Lu, Tian Jian Lu, Feng Xu. Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials. 2013. Vol. 23, N 6. P. 660-672.
DOI: 10.1002/adfm.201201708
https://doi.org/10.1002/adfm.201201708

20. Peppas N, Huang Y, Torres-Lugo M. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering.  2000. Vol. 2. P. 9-29.
DOI: 10.1146/annurev.bioeng.2.1.9
https://doi.org/10.1146/annurev.bioeng.2.1.9

21. Stadniy IA, Konovalova VV, Samchenko YuM, Pobigay GA, Burban AF, Ulber ZR. Development of hydrogel polyelectrolyte membranes with fixed sulpho-groups via radical copolymerization of acrylic monomers. Materials Sciences and Applications. 2011. N 2. P. 270-275.

22. Nikovskaya GN, Godinchuk NV, Samchenko YuM. Removal of heavy metals from aqueous solutions by hydrogels. Journal of Water Chemistry and Technology. 2011. Vol. 33, N 6. P. 363-368. 
DOI: 10.3103/S1063455X11060038
https://doi.org/10.3103/S1063455X11060038

23. Kao WC, Wu JY, Chang CC, Chang JS. Cadmium biosorption by poly(vinyl alcohol) immobilized recombinant Escherichia coli. Journal of Hazardous Materials. 2009. N 169. P.  651-658.
DOI: 10.1016/j.jhazmat.2009.03.140
https://doi.org/10.1016/j.jhazmat.2009.03.140

24. Yahya HF, Ghada A, Mahmoudb MA, Abdel Khalekc. Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. Journal of Radiation Research and Applied Sciences. 2014. Vol. 7, N 2. P. 135-145.
DOI: 10.1016/j.jrras.2013.12.008
https://doi.org/10.1016/j.jrras.2013.12.008

25. Kryklya S., Samchenko Yu., Konovalova V., Poltoracka T., Pasmurceva N., Ulberg Z. Hybrid pH- and thermosensitive hydrogels based on polyvinylalcohol and acrylic monomers. Magisterium. 2016. V. 63. P. 20–28. [in Ukr.]

26. Charles SW, Cullen FC, Owen NL, Williams GA. Infrared spectrum and rotational isomerism of acrylic acid. Journal of Molecular Structure. 1987. Vol. 157. P. 17-29.
DOI: 10.1016/0022-2860(87)87079-5
https://doi.org/10.1016/0022-2860(87)87079-5

27. Samchenko Yu.M., Kernosenko L.O., Kryklya S.O., Pasmurceva N.O., Poltoracka T.P. Hybrid selective sorbents based on acetals of polyvinyl alcohol and acrylic hydrogels. Zurnal Hromatografichnogo Tovarystva. 2016. Vol. 16, N 1-4.  P. 14-23. [in Ukr.]
DOI: 10.15407/zht2016.59.014
https://doi.org/10.15407/zht2016.59.014

28. Kryklia SO, Samchenko YuM, Poltoratska TP, Konovalova VVpH-sensitive hybrid hydrogel materials with incorporated nanoparticles. Nanomaterials: Applicationsand Properties (NAP-2013): 3nd International conference, September 16-23, 2013, Alushta, Edited by: A. Pogrebnjak. Sumy: Sumy State University, 2014. Vol. 3, N 1. P. 4-8.

29. Anirudhan TS, Rijith S. Glutaraldehyde crosslinked epoxyaminated chitosan as an adsorbent for the removal and recovery of cooper(II) from aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009. N 351. P. 52-59.
DOI: 10.1016/j.colsurfa.2009.09.034
https://doi.org/10.1016/j.colsurfa.2009.09.034

30. Fridrikhsberg D. A. Kurs kolloidnoy khimii. Uchebnik dlya vuzov. 2-ye izd., pererab. i dop. L.: Khimiya, 1984. P80-84. [in Russ.]

31. Chen J, Zhang W, Li X. Adsorption of Cu(II) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan. Polymer Bulletin. 2016. Vol. 73, N 7. P. 1965-1984.
DOI: 10.1007/s00289-015-1588-9
https://doi.org/10.1007/s00289-015-1588-9